

Net Energy Metering Assessment Study (NEMAS) & Technical Requirement

Asset Planning & Performance Distribution Network Division, TNB 4 Mac 2020 hamdan.ali@tnb.com.my

Main References

Registration No : KOD/ST/NO.1/2016(Pin. 2017)

Distribution Code For Peninsular Malaysia, Sabah & F.T. Labuan (Amendments) 2017

Suruhanjaya Tenaga Energy Commission Registration No : GP/ST/No. 4/2016 (Pin. 2019)

Guidelines

For Solar Photovoltaic Installation on Net Energy Metering Scheme [Electricity Supply Act (Amendment) 2015 (act A1501)]

- TNB support the initiatives by the Government to achieve 20% RE by 2025.
- With high penetration of RE, TNB to ensure connection of RE will not negatively impact the security, reliability, quality and safety of the existing supply to the consumers

NEMAS and **Technical Requirement**

Capacity	Study	Technical Assessment
1 - 72kW	Self assessment (by Solar Service Provider)	 a) Voltage profile & Penetration limit b) Physical check
> 72kW - 425kW	Load flow analysis (NEMAS)	 c) Voltage regulation d) Penetration limit (60% CT / 75% MD) e) Power factor (above 0.85)
> 425kW	Load flow & short circuit analysis (NEMAS)	f) Fault level

Nominal Voltage	Steady state voltage limits
Low Voltage (230V / 400V)	-6%, +10%
Medium Voltage (11kV / 22kV / 33kV)	-5%, +5%

Nominal Voltage [kV]	Rated Voltage [kV]	Fault Current [kA]
33	36	25
22	24	20
11	12	20
0.4	1.0	31.5

Penetration Limit & Power Factor

b) Penetration limit

Average Maximum Demand / CT Rating	800/5 (554.26kWac)
Maximum Penetration Limit (60% of CT Ratio)	332.55kWac
The Proposed Capacity & Penetration	180.00 kWac @ 54.13%
Capacity Allowed	180.00 kWac

c) Voltage rise due to RE (Solar PV pf=1)

	Peak Load			Trough Load		
	Without RE (V)	With RE (V)	Variance (%)	Without RE (V)	With RE (V)	Variance (%)
PE Pasaraya Odyssey, Bkt Gambir	11220	11220	0.000	11220	11220	0.000
Consumer MSB	409	411	0.489	412	413	0.243
Inverter output	N/A	412	N/A	N/A	415	N/A

d) Power factor effect due to RE (Solar PV pf=1)

	Without RE (as per bill provided)	With RE (declared by the developer in form part 5(c))
Real Power, kWh	37,388 kWh	11,858 kWh
Reactive Power, kVARh	9,834 kVARh	9,834 kVARh
Power Factor, PF	0.967	0.770

Power Factor (PF)	Description
$PF \ge 0.85$	No charge
0.75 < PF < 0.85	For every different of 0.01, additional charge of 1.5% from monthly bill
PF < 0.75	For every different of 0.01, additional charge of 3% from monthly bill

Example:

Power Factor (PF) = 0.77; 0.85 - 0.77 = 0.08 / 0.01 = 8 units x 1.5% = 12%

Total PF surcharge = 12% of total bill

f) Power factor effect due to RE (Solar PV pf=0.967 lagging)

	Without RE (as per bill provided)	With RE (declared by the developer in form part 5(c))@47.42kVAR
Real Power, kWh	37,388 kWh	11,858 kWh
Reactive Power, kVARh	9,834 kVARh	3,108 kVARh
Power Factor, PF	0.967	0.967

Note;

- Simulation is done at inverter power factor 0.967 lagging and consumer power factor is based on
 provided electricity bill.
- Consumer are advisable to run inverter at 0.967 lagging to ensure the electricity bill within the allowable limit power factor.
- · Power factor below 0.85 is subject to low power factor penalty.

Impact of Distributed Generator (DG) on Fault Levels

TNB has formularized 2 steps to encourage DG connection without impacting to fault current violation (DG capacity above 425kW)

Other Main Technical Requirement

1. SCADA / Solar Monitoring is required for capacity 1MW and above

- Solar generation output to link with TNB Regional Control Center / Distribution System Operator
- 2. To use solar inverter with smart functions (Smart Inverter)
 - Smart inverters are PV inverters that stay connected and provide additional functions to help actively support the grid mainly voltage and frequency
 - Example active and reactive power control

SCADA / Monitoring requirement for Solar Capacity 1MW and above

Existing System at TNB Substation	Scope
Substation equipped with SCADA system	Additional Communication Card
Substation not equipped with SCADA system	New SCADA system: Remote Terminal Unit (RTU), Battery Charger, Dual Sim Router (DSR)/ Modem 3G

- The SCADA system will be procured and installed by the customer based on TNB's specification and supervised by TNB
- The SCADA system will be handed over to TNB for operation and maintenance

Smart Inverter Functions

- 1. Anti-islanding with Grid Support Functions Enabled
- 2. Ride-Through Capability
 - Low/High Voltage
 - Low/High Frequency
- 3. Ramp Rates / Reconnect by Soft-Start
- 4. Reactive Power Control Functions
 - Dynamic Volt/VAr Mode
 - Fixed Power Factor
 - Reactive Power Control
 - Reactive Power Support Capability at Night (export/import) optional
- 5. Active power control functions
 - Frequency-Watt
 - Volt-Watt
- 6. Data log/Memory Card for event logs
- 7. Remote Configurability / Scheduling / Shutdown / Power Reduction

THANK YOU